Онколитические вирусы или как использовать вирусы для лечения рака

Цель нашего проекта "Врач на дому" быстро и качественно диагностировать заболевание и предложить  современные методы лечения  на дому 

Онколитические вирусы или как использовать вирусы для лечения рака
19 Июля 2017
Онколитические вирусы или как использовать вирусы для лечения рака
 
Еще в 1904 г. с одной итальянской женщиной случились два опасных для жизни инцидента: у нее диагностировали рак шейки матки, а чуть позже ее укусила собака. Больной ввели обычную вакцину против бешенства, после чего ее «огромная опухоль» таинственным образом исчезла. Рак не давал о себе знать до 1912 г. Вскоре после этого удивительного случая аналогичную вакцину на основе ослабленного вируса бешенства ввели еще нескольким пациенткам с таким же диагнозом. По сообщениям итальянского врача Никола де Паче (Nicola De Расе), у некоторых из них опухоль уменьшилась в размерах— в основном потому, что вирус каким-то образом уничтожал раковые клетки. К сожалению, позже болезнь вернулась, и все пациентки в конце концов скончались.
Были поставлены опыты на животных, давшие более или менее обнадеживающие результаты, проведены пробные клинические испытания — но еще долго эта область находилась на периферии интересов исследователей. На пути развития вирусной терапии стояло множество преград: неясность механизма действия вирусов, неопределенность в их использовании для достижения лечебного эффекта, отсутствие инструментов получения более эффективных штаммов и вполне понятное нежелание лечащих врачей инфицировать и без того больных людей. Они предпочитали использовать ядовитые вещества (имеется в виду химиотерапия), а не микроорганизмы— в основном потому, что это было рутинным делом и они более или менее представляли, как действуют химиопрепараты.
В последние 3 десятилетия, по мере развития представлений о вирусах и злокачественных клетках, а также по мере развития возможностей генной инженерии, внимание ученых вновь вернулось к онколитическим вирусам. Сегодня можно не только использовать природные вирусы для борьбы против рака, но и создавать новые.
В 2005 г. в Китае получил разрешение властей на применение онколитический вирус, активный в отношении опухолей головы и шеи. Более десятка вирусов, потенциально способных атаковать различные опухоли, находятся на разных стадиях испытаний.
Пишут, что в ближайшие годы Управление по санитарному надзору за качеством пищевых продуктов и медикаментов (FDA) США одобрит использование одного, а возможно и двух вирусов в качестве онколитических агентов.
В 2013 г. на ежегодной конференции Американского общества клинической онкологии был представлен доклад, согласно которому 11% испытуемых в обширной группе больных меланомой, прошедших курс вирусной терапии, «полностью излечились» — раковые клетки у них не обнаруживались. Препарат, получивший название T-VEC, представлял собой генетически модифицированный вирус простого герпеса двойного действия: он не только разрушал клетки, но и синтезировал белок (GM-CSF), дополнительно стимулирующий иммунную систему к уничтожению раковых клеток. 
В отличие от химиотерапевтических препаратов с их мучительными побочными эффектами, вирус вызывал лишь симптомы, сходные с симптомами гриппа: слабость, озноб и повышение температуры. Компания Атдеп, которая выпускает этот препарат, опубликовала данные о его эффективности в 2013 г. и весной 2014 г. Продолжительность жизни больных, принимавших T-VEC была в среднем на четыре месяца больше, чем у получавших только GM-CSF.
Результаты весьма скромные. Но следует учитывать, что один из десяти пациентов полностью  излечивался. Частота излечения при приеме T-VEC во много раз превышает ту, которая характерна для всех недавно одобренных препаратов для борьбы с меланомой в том числе и для вемурафениба, разрешенного к применению в 2011 г. после опубликования результатов испытаний в New England Journal of Medicine: в этом случае доля излечившихся была менее 1%.
Вирусы обладают рядом свойств, которые обусловливают целесообразность их применения в качестве противоракового средства. Так, некоторые из них— сами по себе либо при внешнем воздействии— избирательно инфицируют раковые клетки или быстро реплицируются только в них. Здоровые клетки почти не затрагиваются, что очень важно для минимизации побочных эффектов, настоящего бича традиционной химио- и лучевой терапии.
Вирусы используют клеточный аппарат копирования генетического материала и синтеза белков для собственных нужд. При благоприятных условиях раковая клетка оказывается переполненной вирусными частицами, лопается и выбрасывает в межклеточное пространство целую армию «бойцов», поражающих другие клетки опухоли, иногда даже те, которые уже начали образовывать метастазы.  В других случаях вирус действует более скрытно: он постепенно перепрограммирует раковую клетку так что она вступает на путь апоптоза. По существу, вирусы превращают раковые клетки в «фабрики» по производству все больших и больших количеств новых вирусных частиц.
Еще одно преимущество вирусной терапии заключается в ее многопрофильности. Многие противораковые препараты выводят из строя какой-то один элемент клеточного аппарата, и раковая клетка нередко находит способ компенсировать данный дефект. Кроме того, опухоль — это. по существу, клеточная экосистема, все компоненты которой произошли от одной пораженной клетки, но со временем претерпели генетические аберрации и другие изменения. Именно поэтому противоопухолевый препарат может быть активен в отношении одних клеток и не действовать на другие. Эту проблему решают, применяя комбинированную химиотерапию (как при лечении больных СПИДом). Вирусная терапия по самой своей природе сходна с комбинированной, поскольку вирус влияет на многие клеточные процессы и вероятность резистентности резко падает.
Позже выяснилось, что иногда иммунные клетки перепрограммируются и переходят на сторону опухоли, вместо того чтобы бороться с ней что во многих случаях сводит на нет действие химиотерапии. Мы не знаем доподлинно, каким образом, когда и почему происходит переключение, но зато нам известно, что процесс инфицирования и разрушения раковых клеток сопровождается образованием клеточных обломков, которые инициируют выработку небольших иммуностимулирующих молекул— цитокинов, и активацией дендритных клеток. В норме эти клетки циркулируют но всему организму, отыскивая любые чужеродные агенты, и активируют Т-клетки, которые их уничтожают. В нашем случае чужеродными агентами служат обломки раковых клеток.
Помимо всего перечисленного у вирусной терапии есть еще одно достоинство: вирусы можно генетически модифицировать для того, чтобы ослабить их способность размножаться в нормальных клетках и повысить скорость репликации в клетках опухоли. Можно придать им и другие свойства, такие, например, какими обладает T-VEC. дополнительно стимулирующий иммунную систему к борьбе с опухолью.
Супервирусы
Используя все эти сведения, биологи пытаются усовершенствовать вирусную терапию, модифицируя вирусы. Некоторые из полученных ими продуктов уже проходят клинические испытания, в их числе — видоизмененный вирус, способный связываться со специфическими рецепторами, которых у раковых клеток гораздо больше, чем у нормальных. С помощью рецепторов вирусные частицы проникают в клетки, и в результате вероятность инфицирования опухолевых клеток во много раз превышает таковую для их здоровых аналогов.

Альтернативный подход заключается в повышении скорости репликации вируса в раковых клетках С учетом этого были сконструированы вирусы, особенно нуждающиеся в веществах, которые в избытке присутствуют в раковых клетках. В частности, один из таких вирусов генетически модифицировали таким образом, что он не мог продуцировать тимидин, один из строительных белков ДНК, и вынужден был искать его источник «на стороне». Таким источником могла служить только раковая клетка, в нормальных клетках его недостаточно для удовлетворения потребностей вируса. Терапия с применением этого вируса уже проходит тестирование.
Группа, возглавляемая Джоном Беллом из Научно-исследовательского института при Клинической больнице Оттавы, совместно с Гленом Барбером и его сотрудниками из Университета Майами выявила еще одну причину, по которой вирусы успешнее размножаются в раковых клетках: на пути к малигнизации клетки претерпевают генетические и другие изменения, в результате которых ослабляется их способность противостоять инфекции. Так, они перестают вырабатывать интерферон. Белл и Барбер сконструировали ряд вирусов (среди них — генетически видоизмененный вирус везикулярного стоматита, VSV) которые не могут размножаться нигде, кроме раковых клеток, лишившихся противовирусной защиты. Один из таких VSV проходит тестирование на больных, страдающих раком печени.
В рамках той же иммуностимулирующей стратегии коллеги из Университета Макмастера в Онтарио и Клиники Мэйо в Рочестере, штат Миннесота встроили в онколитические вирусы гены, кодирующие специфические белки (антигены), на которые реагирует иммунная система. В качестве примера можно привести меланомоспецифичный антиген (MAGE). Как показали опыты на животных, данные антигены размещаются на поверхности инфицированных раковых клеток, компоненты иммунной системы распознают их и уничтожают клетки. В это время онколитический вирус тоже разрушает опухолевые клетки и изменяет микроокружение опухоли так, что в результате усиливается иммунный ответ. Ожидается, что уже в начале этого года начнутся клинические испытания нового подхода.
Идея «подстегнуть- иммунную систему представляется весьма привлекательной. Но многолетние исследования эффективности иммунотерапии показали, что опухоли выработали разнообразные системы защиты и возможно, для того чтобы достичь успеха, нужно от них избавиться. Нет смысла «подстегивать» иммунитет, если опухоль подавляет иммунный ответ.
Ученые Университета Калгари работают сейчас над тем, чтобы вывести из строя клетки-иммуносунрессанты которые орудуют в недрах опухоли параллельно с онколитическими вирусами. Если это удастся сделать, иммунная система, получив дополнительный стимул от онколитического вируса, сможет бороться с раком более эффективно. В данной работе большим подспорьем для нас стали успехи, достигнутые входе многолетних исследований иммунологов, которые апробировали множество способов подавить иммуносупрессию. Один из таких способов, представляющийся наиболее перспективным, основан на использовании моноклональных антител, которые связываются со специфическими молекулами, называемыми PD-1. С большой вероятностью подобные комбинированные стратегии значительно повысят частоту излечения раковых больных.
Следует помнить, однако, о рисках, связанных с применением комбинированной терапии. Несмотря на то что вирусная терапия сама по себе показала свою безопасность (в ходе клинических испытаний отмечалось очень небольшое число случаев, когда возникали серьезные побочные эффекты), нет полной уверенности, что вирус поведет себя так же при одновременно проводимой иммунотерапии или при повышении титра. «До сих пор опколитическан вирусная терапия не вызывала опасений. — говорит наш коллега Стивен Расселл, профессор медицины из Клиники Мэйо. — Но с повышением ее потенциала и расширением сферы применения — особенно на фоне манипуляций с иммунной системой организма-хозяина — увеличивается риск побочных эффектов, и мы должны это учитывать».
Вирусная противораковая терапия не могла бы появиться на свет без использования достижений в различных областях биологии и медицины — молекулярной генетики, биологии рака, иммунологии опухолей, иммунотерапии, вирусологии и генной терапии. Многолетние исследования в этих направлениях дали ученым набор инструментов и информацию, которые необходимы для понимания взаимодействий между вирусами и организмом человека. То, что онколитическая вирусная терапия работает, не вызывает сомнений. Вопрос в том, как сделать ее более эффективной и осуществить тем самым мечту Николы де Паче, который еще 100 с лишним лет назад сообщил о таинственном уменьшении размеров опухоли после введения вакцины на основе вируса.